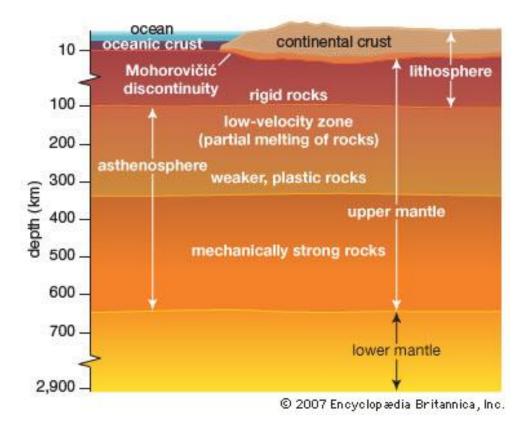
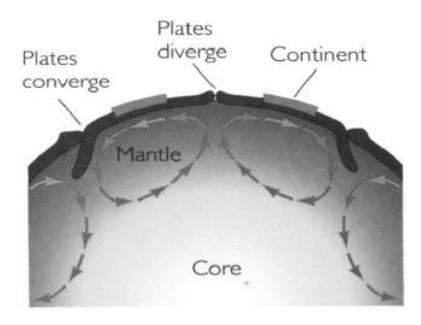
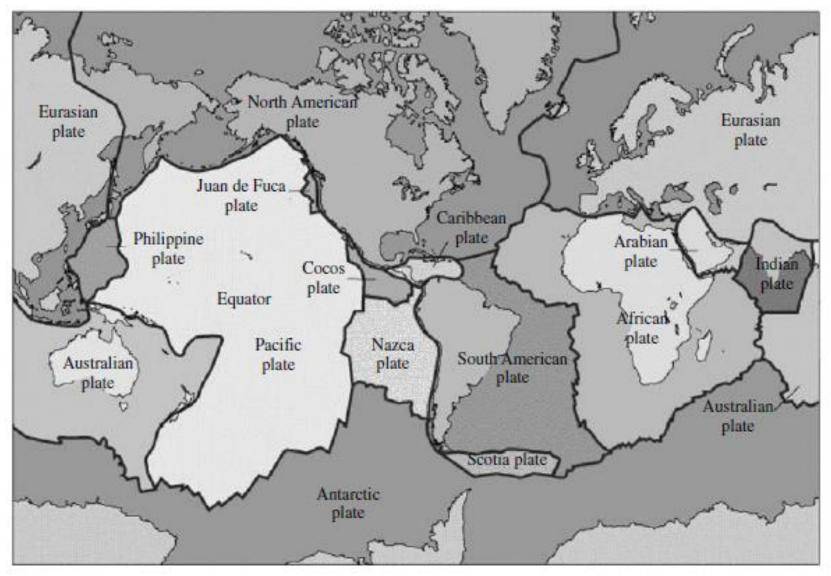

• Earthquake is a sudden shaking or vibration of the earth's surface that follows a release of energy in the earth's crust


- Thousands of earthquakes occur every year, most earthquakes cannot be felt without sensitive instruments
- Causes of earthquakes:
 - Tectonic earthquakes, realtive movements of earth crust
 - Explosions nuclear or chemical
 - Volcanic earthquakes

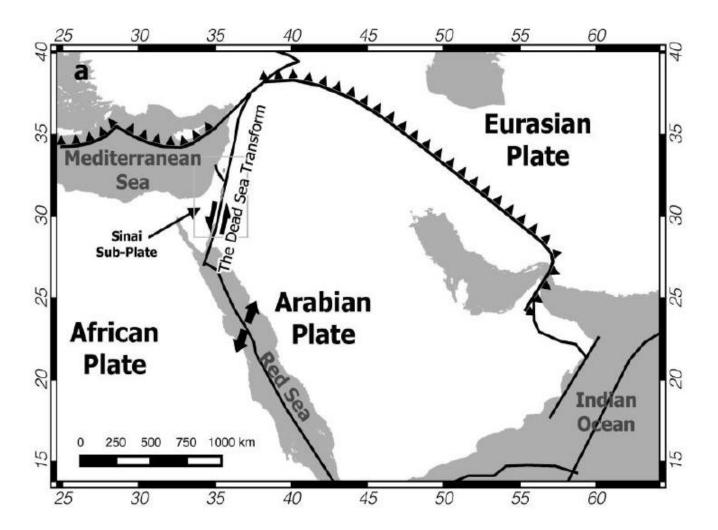
Earth's interior structure


- Earth has three concentric layers; core, mantle and Crust
- There is variation in densities between the different layers
- There are two outermost boundaries of the earth in terms of material strength; lithosphere and asthenosphere

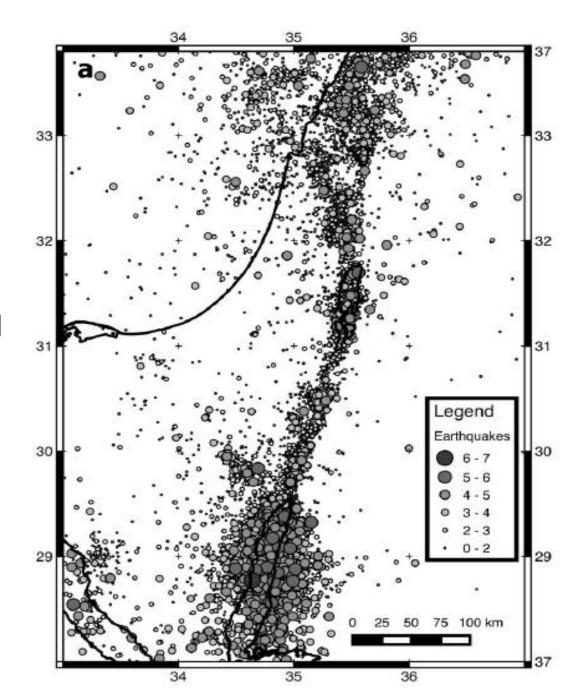
Cross-section of outermost part of earth

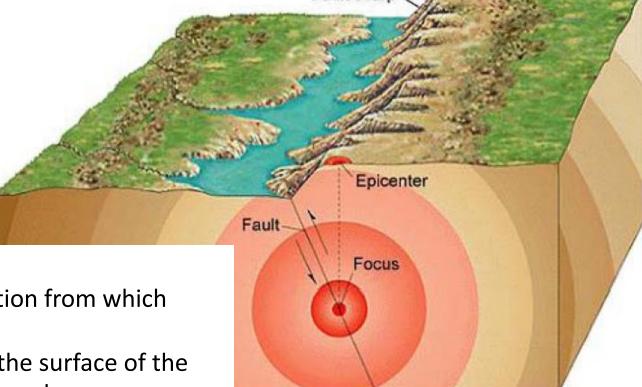

- The lithosphere is rigid and relatively strong, it is formed of crust and outermost part of matle
- The asthenosphere lies below lithosphere , which forms the weak part of mantle
- Lithosphere floats over asthenosphere

Earth is in constant motion!



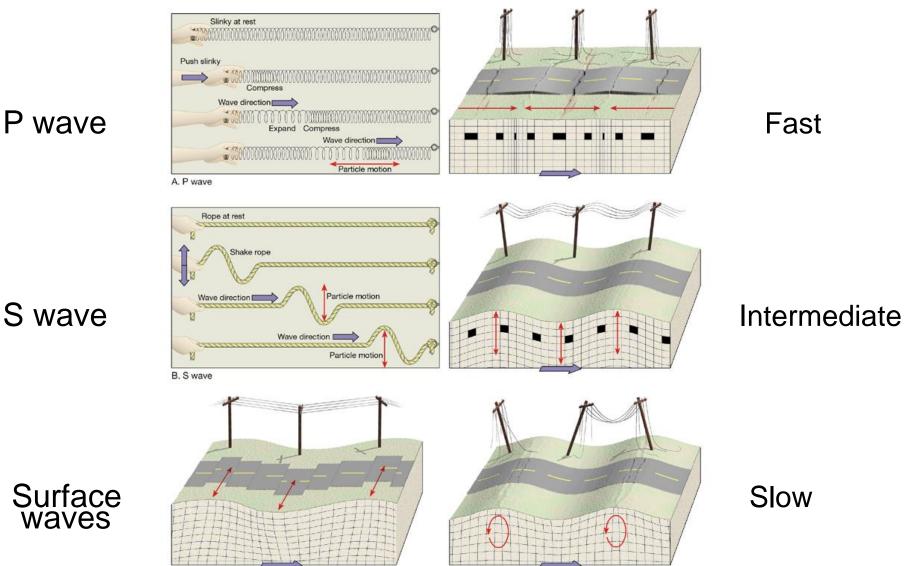
- Earth is on constant motion driven by heat
- Source of heat is the radioactivity within the core
- Temprature gradient across earth layers sets up a flow of heat heat transfer by convection.
- Convection currents cause movements
- Movement withing asthenosphere creats movement in lithosphere, (lithosphere plates- tectonic plates)


Seismicity of the world: tectonic earthquakes are caused by the sudden dislocation of large rock masses along geological faults within earth's crust


 We are situated along the DEAD SEA Transform (DST), which is a tectonically active plate boundary separating the Arabian plate and the Sinai sub-plate.

 The DST has been generating intensive earthquake activity affecting region, including the destructive <u>Ms 6.2</u> <u>earthquake in 1927</u> and the <u>major Mw 7.2</u> <u>earthquake by 1995</u>.

Fault scare


- **Hypocenter (focus):** location from which seismic waves start
- **Epicenter:** projection on the surface of the earth directly above hypocenter
- Shallow earthquakes: these earthquakes happen when hypocenter are within the crust
- **Deep earthquakes** are located in the mantle
- Seismic waves: waves of energy that travel through the earth, and are a result of an earthquake

Seismic waves:

- The stored strain energy of deformation in the rupture zone is released by the earthquake
- This energy is tranformed into heat (friction) and into kinetic energy (seismic waves)
- The seismic waves are a combination of different types
 - Body waves fastest
 - Longitudinal waves (P waves)
 - Shear waves (S waves)
 - Surface waves slowest
 - Rayleigh waves
 - Love waves

Types of seismic waves

C. Surface wave

D. Surface wave

Erathquake measurement:

Earthquake size can be expressed in several ways.

Intensity

- Qualitative (non-instrumental) measurement.
- Subjective damage evaluation based on description of earthquake effects.

Magnitude

- Quantitative (instrumental) measurement.
- Objective measure of earthquake size or fault dimensions.

Intensity:

- Discrete scales are used to quantify seismic intensity.
- The levels are represented by Roman numerals and each degree of intensity provides a qualitative description of earthquake effects:
 - i. Mercalli_Cancani-Seiberg (MCS): 12-level scale used in southern Europe;
 - Modified Mercalli (MM): 12-level scale used in North American and several other countries;
 - iii. Medvedev-Sponheuer-Karnik (MSK): 12-level scale developed in Central and Eastern Europe and used in several other countries;
 - iv. European Macroseismic Scale (EMS): 12-level scale adopted since 1998 in Europe;
 - v. Japanese Meteorological Agency (JMA): 7-level scale used in Japan.

Different intensity scales:

Mode Merc.		I	п	ш	IV	v	VI	VII	VIII	IX	x	XI	ХП
Mercalli Cancani Seiberg	I	п	ш	IV	v	VI	VII VII	IX	X	XI XII			
Medvi Sponhi Kary	EUER	I	пп	I	v	VI	VI	I VII	IX	x	XI	XII	
European MacroSeismic	I	п	п	I IV	v	VI	VI	ı viii	IX	X	XI	XII	
METEO	PANESE DROLOGI GENCY	CAL	I		п	ш	IV	v		VI	1	ЛП	

Magnitude: General comparision

Туре	Author	Earthquake Size	Earthquake Depth	Epicentre distance	Reference Parameter	Applicability	Saturatio n
ML	Richter, 1935	Small	Shallow	< 600 km	Wave amplitude	Regional (California)	~
m _b	Gutenberg & Richter, 1956	Small-to- Medium	Deep	> 600 km	Wave amplitude (P-waves)	World-wide	*
M _s	Richter & Gutenberg, 1936	Large	Shallow	> 2000 km	Wave Amplitude (LR-waves)	World-wide	4
Mw	Kanamori, 1977	All	All	All	Seismic Moment	World-wide	n.a.

The general correlation between magnitude M and A is as follows:

 $M = \log(A) + f(d, h) + C_{s} + C_{R}$

in which the function f(d,h) accounts for epicentral distance d and focal depth h. The coefficients C_s and C_R are station and regional corrections, respectively.